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ON THE PROPAGATION OF NON-STEADY PERTURBATIONS IN A BOUNDARY 
LAYER WITH SELFINDUCED PRESSURE* 

V.B. GURIN and E.D. TBREMT'EV 

The problem of supersonic flow past a flat plate bearing a triangular 
vibrator which begins to execute harmonic oscillations in the unperturbed 
boundary layer, is studied. Both the plate and vibrator are assumed to 
be thermally insulated. The size of the vibrator and the frequency of 
its oscillations are such that the flow can be described bythe equations 
for a boundary layer with selfinduced pressure. The oscillationemplitude 
is assumed to be small, and this enables the equations to be linearized. 
The linear formulation is used to study the problem where the pressure 
reaches a steady-state periodic mode. The problem of the vibrator is 
used to solve the problem of the propagation of non-steady perturbations 
both upstreamanddownstreem. 

1. Formulation of the problem and its formal solution. Consider the flow of 
an ideal gas past a thermally insulated body representing a flat plate with an irregularity 
positioned at some distance from the ends, and of which changes its form with time. We shall 
assume that the parameters of the incoming unperturbed flow (u,* is the velocity, pm* is 
the pressure and pm* is the density) determine the Mach number Mm>1 (here and henceforth 
the subscriptca refers to the parameters in the unperturbed flow). We assume that the depend- 
ence of the first coefficient of viscosity on temperature T* is linear 
T+/T2), 

a,*/?& = CT’ (T’ = 
and the Prandtl number is equal to unity. The distance from the leading edge of the 

plate to the irregularity will be denoted by L*, and in place of the reciprocal of the 
Reynolds number we shall use the small parameter e = ReI-“* (Re, = p+,U+,L+/k&) . 

Let us choose the longitudinal dimension of the irregularity 0 (L*e3), the transverse 
dimension iJ(L*e6), and the characteristic time of variation in the form of the irregularity 

0 (L*eVU”,). To describe the motion in the neighbourhood of such an irregularity it is 
convenient to separate three characteristic regions /I, 2/: the upper region of the supersonic 
inviscid flow (yl* = O(L*e')), the intermediate region of the conventional boundary layer 
(y,* = O(L*@)) and the lower region of the boundary layer with selfinduced pressure. The 
principal difficulties that arise in such a scheme are connected with constructing a solution 
in the lower region, and investigation of this region is the purpose of this paper. 

Let us introduce the dependent and independent dimensionless variables used in /3, 4/ and 
denote by x and y the Cartesian coordinate axes, with x directed along the plate, u and v 
the velocity vector components along the x and y axes, p the pressure and p the density. By 
requiring that the conditions of merging with the conventional boundary layer hold as x +-00 
and y -00, we obtain, from the Navier-Stokes equations for the pincipal terms of the expansion 
as e-+0, a set of equations for the unsteady boundary layer with selfinduced pressure /3-s/. 
We shall describe the irregularity (Fig.1) in the form 

Y, = cf (& m), c< 1 (1.1) 

and demand that the conditions of adhesion hold on the plate and the irregularity. This gives 

the following relations for the approximation (8 +O) used: 

a (t, 2, yp) = 0, v(1, 5, y,) = oaf/at f1.2) 

Fig.1 
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The conditions that 
enable the problem to be 

Substituting the expansion (1.3) into the Navier-Stokes equations we obtain 

-and we impose the following limit and boundary conditions on its solution: 

the transverse dimension of the irregularity 
linearized by expanding the functions sought 

a = y f au1 + . . . . u = avl +..., p = up, + . . . 

(1.1) should be 
in power series 

z-P---, h-+0, pl-?o; y+a, U1”- s PI 6 

II (t, 2, 0) = -f (t, z), v, (f, x, 0) = af (f, x),aT 

small, 
in a 

(1.3) 

(1.4) 

(1.5) 

Such a formulation of the problem was used in /6/, where the author studied oscillations 
that were harmonic with time and which lasted for an unlimited length of time. If on the 
other hand we begin the study of the motion at the instant t = 0, then we must specify add- 
itional, time-dependent conditions 

111 (0, 2% v) = 'Pa (5, V) (1.6) 

The function cpO is assumed to be correlated with (1.4) and (1.5) 

%(x,O)=--1(0,~), 
x 

cpo(x,dQ)=- s PI (0, XI) dxl, 
aPI (0.2) @$I O) - 

a+ 
-ca 

Henceforth we shall consider the flows caused by the motion of the irregularity in the 
unperturbed boundary layer, writing for this reason ‘pO (5, 61) = 0. 

Equations (1.4) can be analyzed more conveniently by ch&ging to a single equation for 
the function u1 

(1.7) 

which, in addition to (1.5), must also satisfy the following condition in accordance with the 
last equation of (1.4): 

a=u, (t, x, oyayz = ap, (1, x)/ax (1.8) 

We will construct a solution for Eq.Cl.7) with theconditions (1.5), (1.6) and (1.8), using 
for the functions ul,pl,j a Fourier transform in x and a Laplace tranform in t 

DDDD 

I&=~ 
ss 

U1(t,x,&@f-hdtdx, Reo>lo>O, ImA=O 
--0 

Then we obtain the following problem for ii, and p',: 

(1.9) 

We will introduce for (1.9) the following new independent variable: 

s E (i/Q‘l*~/ + a, i = e'n/t, Q = I"/*&+ 

and select for k a cut in the complex plane along the positive part of the imaginary axis, 
assigning the value argk = 0 to the real positive k. The third-order ordinary differential 
equation in problem (1.9) has three specified boundary conditions containing the parameter 

PI. It would seem that its solution exists for an rS,, but this is not so. Thecondition 
as ~-too is equivalent to two conditions: ii1 is bounded, and equal to a specified constant. 
For this reason the solution of the problem can be written only for a specifed jJ1: 

ii, (Q, k, z) = Br (Q, k) Z (2) + B, (Qlk), Pr = --t&0-& k) (1.10) 

Z(z)= 5 Ai dzl, F $2, k) = Ai' (62) + (ik)‘hZ (62) 

B1 (Q, ;) = -(s!c)‘/lf (Q, k)lF $2, k), B, (L-2, k) = - Ai' ($2) 7 (Q, k)/F (Cl, k) 
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(Ai (a) and Ai’ denote the Airy function and its derivative). Using (l.lO), we write 
the solution of problem (1.5)-(1.8) as 

(1.11) 

2. The problem of a vibrator: approach to the steady oscillatory mode. 
The perturbations caused by the vibrator executing harmonic oscillations for an infinitely 
long time before the instant of time considered, were studied in /6/. We will consider the 
perturbations caused by a vibrator which begins to operate at the instant t = 0 in the un- 
perturbed boundary layer (cp,,(z, y) = 0). With this in mind, we define the function 

f (t, r) = fl (2) sin ci@ (2.1) 

where o0 is dimensionless frequency and the function fl(x) describes, as in/l/, a triangular 
form (Fig.11 with parameters a and b (fr(z)= 0 at x < 0, 2s at 0 < s < b,2b (a - ~)/(a - b) at 

b<t<a,O at 2 > 4. Let us investigate the pressure in the gas caused by such avibxator. 
According to (l.lO),(l.ll) and (2.1) we have 

CQI-j-ica _ 

p13- = s s fo(a,b,k)Ai'(Q) 2n* ~W’foq~(Q,~) 
e@t+ib do dk 

-0 I-i00 

(2.2) 

f,,(a,b,k)~: 1 - *exp(- ikb)+ -&erp(- ikuj 

We will use (2.2) as the starting point to obtain an asymptotic formula for the pressure 

Pl at finite x and t-co. To do this we consider the inner integral 

l+ior 

I,= s Ai'( du 

,__im (%’ + 4 = w w 

The denominator of the integrand vanishes when o= ioo, 0 = -io,, and we then have 

F (64, k) = Ai' (Q) $ (fk)"Y (Q) = 0 (2.3) 

Equation (2.3) represents a dispersion relation connecting (I) with k for free oscillations in 
a supersonic boundary layer /4, s/. 

A computer was used to construct the trajectories of the roots o(k) when k varies along 
the real axis. When k<O, the trajectories o(k) lie in the second quadrant (Fig.2) and 
the inequality n>argar(k)>O.57 R holds for all roots; when k>O, the trajectories o(k) are 
symmetrical about the axis Imk=O with respect to the trajectories shown in Fig.2, lie in 
the third quadrant and satisfy the inequality -0.57n)ago (k)>-n.the Cauchy theorem 

Fig.2 Fig.3 

on residues, we change the path of integration in It, putting Z= 0 and choosing two rays 
as the new integration path, namely c1 shown in Fig.2 and, symmetrical to it, CI lying in 
the third quadrant. Let the angles made by the rays C, and Ct with the positive direction 
of the axis Im o = 0 be n/2+ a and --n/2-c, where a~ satisfies the inequality 0 < a<0.07. When 
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the integration path is changed in this manner, the poles of the points % and -io,, must 
be taken into account, but not the poles corresponding to the roots (2.3). As a result we 
have 

(2.4) 

Let us assess the contribution of the integrals on the right-hand side of (2.4) to the 
pressure pl, as t-09. The integrand in these integrals is written in a form Suitable for 
application of Laplace's lemma on the asymptotic estimation of integrals according to whichthe 
principal contribution in the course of integration will be made by the small neighbourhocd 
of the point 0. Using further the fact that II(Q)/A~'(P)~ is bounded when o varies along the 
integration path we find, that the contribution towards PI as t-m will be of the order of 
0 (r-3). 

Writing the integrals in k we obtain, from the first term determined by the poles lo, 
and --loo, 

m 01 
1 1 

PI=- ,cosoor s 
Re (Ub) dk + T sin oat 

s Im('&O)dk+o(P) 
(2.5) 

-0D -m 

CD, = To (0, b, k) Ai' (P,)/c-V-~ (Q,, k)e’” 
Remembering that the motion studied in /7/ was generated by a vibrator oscillating acc- 

ording to the law eoso,t, (the time used in /7/ is denoted by t,), while the motion studied 
here obeys the law sino,t and hence L, = 1 - n/20,, we find that the formula for the pressure 
in /7/ agrees with (2.5) to within quantities 0 (t-a). This shows that, after the vibrator 
commences working, the steady state oscillatory mode in the gas is reached fairly quickly, 
more quickly than according to the law t*. 

3. On the propagation of non-steady perturbations. Using the problem of the 
vibrator, we shall consider the question of the propagation of non-steady perturbations in a 
supersonic boundary layer with selfinduced pressure. With this aim we again turn to Eq.(Z.Z), 
which defines the pressure, and study the asymptotic behaviour of pl at finite t and ItI -+m. 

We change the order of integration in (2.2), choosing the integral in k as the inner one. 
This can be done using F'ubini's theorem, since the integrand decreases rapidly as Ikl+= 
and 101-t 00. We will use a computer to study the behaviour of the roots k(o) in (2.3) 
with o varying along the straight line parallel to the imaginary axis with 1*1(0=1-i- 
il,, -00 < I, < 00, 1 = const). Since the Riemannian surface B consists of a single sheet, we 
will first consider the roots Q(a). As was stated in /6/, we have a denumerable set of 
roots for a definite value of @(e.g. 2 = 0,1, = 1) ( consequently each root generates a 
trajectory when ochanges. Using the notation for the roots adopted in /6/, we denote the 
corresponding trajectories by &*,fJ)*, where f=O,I,.... The pattern of the first traj- 
ectories characteristic for large values of 1 is shown in Fig.3 for 1 = 7.5 only for ImQ>O, 
since for Ima< the trajectories are symmetrical, with respect to those given in Fig.3, 
about the axis ImP=O. The arrows indicate the directions corresponding to increasing 1,. 

M, denote the zeros of I@), while the corresponding, symmetrically distributed points in 
the third quadrant which are also the roots of I(Q), will be denoted by M,: Equation 
(2.3) implies that the trajectories of its roots tend to the points M, and M,' as 1, +fm. 
Amongst the trajectories we have the trajectory &,+ emerging from the point a infinity, and 
returning to it. 

Mi and MI’, 
Two trajectories, 62,* and fir** connect the point at infinity with the pojnts 

and j increases as 1 increases. Thus, when I< 6.8, 
the point at infinity with MI and Mz’. 

the trajectories connect 

points M, and M,’ to Mj+l, M,+l’, 
When the trajectories a,* and &** pass from the 

a single trajectory emerges from the points 
and Ml’ and returns to them, e.g. a,* for M, and S2,* for MI'. 

M,,M,', . . ..M. 

MI+,‘, MJ+* and Mj+s‘, . . . , 
As regards the points Ml+,, 

they are connected to one another by the trajectories, with the 
trajectories Q,* and as* connecting the points M,and M,‘. 

Let Us now consider the perturbations propagating upstream as s+_-m. With this aj_m we 
inspect the inner inteqral in k 

m 

m J,= 
s 

O,dk= 
s 

70 (a, b. k) Ai’ (Ck) .#= dk 
kF (Q, k) -JD -0D 

(3.1) 

Using the relation k = i-‘o’4W~ and the trajectories Q(e) obtained and shown in Fig.3, 
we construct the roots k(o). Forthelowerhalf-plane c-n< argk<O) wehave asingle trajectory 
k,*(o)(Fig.4) generated by the trajectory Qo* (0). We compute the integral (3.1) using a 
closea contour consisting of a segment of the real axis from -r to r, and the arc of thecircle 
lying in the lower half-plane and connecting the points -_r and I (Fig.4) 
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Since the integral along the arc of the circle tends to zero as 
r-cm when z c 0, then according to Cauchy's theorem the 

integral (3.1) is given by the residue at the point k,* (a). Sub- 
stituting the value of I, obtained into (2.2), we obtain 

Pig.4 

We use the method of steepest descent as I-+03, express the integral 
three integrals corresponding to three terms in the function for and find 
equation 

(3.2) as a sum of 
the roots of the 

(3.3) 

where q = 2;s - b;z - a for the first, second and third integral respectively. According to 
/5/ the quantity Idk,+ldo 1 +O as 1 o 1 +a~, and the following expression holds for k,* : 

ko* = -io’ll - ‘/,io-‘lB + 0 (o-‘h) (3.4) 

Substituting (3.4) into (3.3) we find the root of (3.3), i.e. the point of steepest descent 

and draw through it the contour of integration, choosing for this 1 = 0’. Since the relation 

lQl>l always holds on such a path of integration, it follows that the root k,,* can be 
replaced by the series (3.4). Making the change of variable o = mGl'/ta, we write the function 
appearing in the exponent in (3.2) in the form- 

The real part of the function g1 takes a maximum value on the 
point 01 = (01’ = ‘I, - Plxf, and the integration path coincides, in 

integration path at 
the neighbourhood of 

the 
this 
as point, with the line Im gl(mJ = Im Ki(m,'). Then the integral (3.2) will be determined, 

z,‘/t -boo , by the neighbourhood of the point q = q'and we can write, in accordance with 
the method of steepest descent, 

p1 = 8n-‘hx,t’~+ 9 (x) - + a (x - 6) + (3.5) 

&@@-a)] -88n-'~WQqz~-'erp (- r$/(&) -t) 

CD1 (x) = I 21” exp (--3’14t) (1 + 0 ((P f P)/P) 

From (3.5) it follows that the perturbations propagate.upstream with infinite speed and 
appear, at any t>o, at once over the whole region x<O with the fronts completely absent 
from the flow (such as a moving front of the discontinuities in the first-order derivatives). 
The perturbations are unaffected by the geometrical form of the vibrator, 

Fig.5 
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since a and b do not occur in the principal term, which is proportional to the initial normal 
velocity o0 of the vibrator surface. Such a mode of propagation is typical for theperturb- 
ations described by parabolic equations. 

Let us now consider the perturbations propagating downstream as r-+co. Again we consider 
the integral JX given by (3.1). Using the trajectories a(o) (Fig.31 we construct the roots 

k(o) in the upper half-plane for 0 < argkQ n in Fig.5a and for -2ndargk \<--n in 
Fig.5b. The solid lines in Fig.Sa depict the roots for which O<arga,<n/2 holds, and the 
dashed lines the roots for which --1cf2<arg0< 0 holds. The solid lines in Fig.5b represent 
the trajectories for which -n/2< arg o<O holds, and the dashed lines those for which 0 ~1 
arg 0 Q n/2 holds. Taking the behaviour of the roots into account, we transform theintegral 

J + , first for 0 satisfying the inequality 06 argo <n/2. We split .T= into two integrals 

i 
In accordance with Fig.Sb we replace the ztegration path in J+, by a ray emerging at 

the angle --A -a, without grazing the trajectories of the roots k(w) (the dashed line). On 
the other hand, according to Fig.5a, in the interval Jln, we replace the path of integration 
by a ray emerging at an angle n - a1 without grazing the trajectory of the roots k(o)and 
also take into account the residue generated by the root k,*(o). Asymptotic analysis at 
1st shows that such a,do exist. As a result we have 

(3.6) 

Q, = up*/* exp (nil3 + 2ia,13), t& = Q, exp (-4id3) 

Applying to the right-hand side of (3.6) transformations analogous to those used in /7/ in 
computing the asymptotic forms as z+oo, we find that when z+oo, 

Jx = @, (0, x, a, b) + 2ni res @A (klL (a)) (3.7) 

Next we transform Jz in the range - nl2 Q arga, g 0 as follows. We choose for the int- 
egration path in Jn the ray emerging at the angle &+a,, and take into accountthe residue 
generated by the root k,** (4, while in the integral Jm we choose, as the integration 
path, the ray emerging at an angle a,. New integratibn paths are shown in Fig.Sa and b 
by the dot-dash lines. Carrying out transformations analogous to those for 0 <arg 0 <x12, 
we find, that as z-cm and -_ir/2 < arg o f0 the integral 

J, = 0, (o,z, a, b) + 2ni res @% (kl** ((u)) (3.8) 

Substituting expressions (3.7) and (3.8) into (2.21, we obtain 

(3.9) 

In analyzing the integral 11 we shall only consider the principal term proportional to 
u&(0, 2 -a). Making the change of variable 61 = OS (z-a)%-', we obtain 

[‘+i- 

II- - i2’/‘3-“‘n’lnb (a - b)-1 (z - a)’ l-4 S o;(* >c 

r--lo. 

[I -tO((z- a)-’ t’op)] (cso* + a$ (2 - a)’ t-y-1 x 

exp [(s - @at-* (a - 2”‘3-“‘$)] da,’ Z’= It’ (z - a)* 



Passing to the limit as (z - a)%/ts +W, we will estimate the integral I, usingthe method 
of steepest descent. The point 0% = s/k, is the point of steepest descent, therefore wechoose 

1' = 91,. On such an integration path the real part of the function under the exponent sign 
will attain its maximum value at the point of steepest descent, and the imaginary part of this 
function will remain constant in the neighbourhood of this point. This gives 

I 1 - 2~3-l”nb (a - b)-’ (z - n)-3 t’lg / I- t-2 - + (2 - a)-" x (3.10) 

iI(& f + t-a)!-* [I + 0 (P (z - a)_)] exp [L 3 (I - ay/4ty 

Let us expand the integrands in I? for large o, again restricting ourselves tothe prin- 
cipal term proportional to bi(u - b) 

The following expression holds for: 

k,* = o'l*eei/~ (1 - l/z~-l + 0 (a+)) 

k,** = ,'/ze-3"/2 (1 - l/t o-1 + 0 (0")) 

Since the principal parts of the integrals in (3.11) contain only integral powers of k,* 
and k,**, it follows that we can write a single integral of an analytic function with the 
limits Z-i 00 and l-+lW. For the real part of the function under the exponential sign 
ot - cot/.(1 -1/a o-l+ . ..) (z-u), the point of steepest descent will be 

o=(z- a)*/ (4P) + 1 + 0 (P (5 - a)-“) 

Carrying out computations analogous to those used in determining the asymptotic forms 
for plas z-+1-w, we obtain the asymptotic form of the expression for I, as (I -u)~ t-l-+ 
00. Substituting the asymptotic expressions for I, (3.10) and I, (3.9), we obtain the asym- 
ptotic form for p1 as z +w: 

s1 = - 2’3~“‘n-+,b (a - b)-’ (z - a)* f/g [ 1 + 0 (t3 (z - a)-“] x (3.12) 

1 1 _ t-2 - _g(x - a)-2 t” (& + + t-y x 

ixp[- 3(x - u)*/bt*] -+ 8n-‘h,b (a - b)-1 (3 - a)-3 fly x 

[I + 0 ((t” + ta)/ti] exp [- (x - u)‘Pit i- t] 

It follows from (3.12) that the perturbations propagate downstream with infinite speed 
and there are no fronts in the flow. The perturbations at x+w become more complicated 
than those at x+-w. At the time t< 1/3 the character of the perturbations isdetermined 
by the second term of (3.12) which deiines the perturbations analogous to those appearing 
when x-c- W (3.5). while for t>1/3 the first term of (3.12) is the principal term, i.e. 
the 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

asymptotic modes change as X-+.W. 
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